An immune-inspired, information-theoretic framework for blind inversion of Wiener systems
نویسندگان
چکیده
This work proposes a new approach to the blind inversion of Wiener systems. A Wiener system is composed of a linear time-invariant (LTI) sub-system followed by a memoryless nonlinear function. The goal is to recover the input signal by knowing just the output of the Wiener system, and the straightforward scheme to achieve this is called the Hammerstein system –– apply a memoryless nonlinear mapping followed by a LTI sub-system to the output signal of the Wiener system. If the input of the Wiener system is originally iid and some mild conditions are satisfied, the inversion is possible. Based on this statement and the limitations of relevant previous works, a solution is proposed combining (i) immune-inspired optimization algorithms, (ii) information theory and (iii) IIR filters that yield a robust scheme with a relatively reduced risk of local convergence. Experimental results indicated a similar or superior performance of the new approach, in comparison with two other blind methodologies.
منابع مشابه
Blind Inversion of Wiener System Using a Minimization-projection (mp) Approach
In this paper, a new algorithm for blind inversion of Wiener systems is presented. The algorithm is based on minimization of mutual information of the output samples. This minimization is done through a Minimization-Projection (MP) approach, using a nonparametric “gradient” of mutual information.
متن کاملQuasi-nonparametric blind inversion of Wiener systems
An e cient procedure for the blind inversion of a nonlinear Wiener system is proposed. We proved that the problem can be expressed as a problem of blind source separation in nonlinear mixtures, for which a solution has been recently proposed. Based on a quasi-nonparametric relative gradient descent, the proposed algorithm can perform e ciently even in the presence of hard distortions.
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملInverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 113 شماره
صفحات -
تاریخ انتشار 2015